If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+19x-2=0
a = 15; b = 19; c = -2;
Δ = b2-4ac
Δ = 192-4·15·(-2)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{481}}{2*15}=\frac{-19-\sqrt{481}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{481}}{2*15}=\frac{-19+\sqrt{481}}{30} $
| 3x/8(10-2)=4x+3 | | (2x–1)=(3x2+2x–5) | | (-6+-1x)(3+-1x)=0 | | P=900+10t | | 6x-10=5x+4 | | n+14=n+8 | | 6x-15=180 | | -2x=5-6x+4x | | 6d−2/11=2d−2/13 | | -v+2v=14-6v | | 6+3b=-1 | | 10z+45+90=180 | | r/2+4=10 | | 4(t)=(8/3)t^2 | | 5(x+2)+25=50 | | x−3=x−6 | | -1-r=-r-4+3 | | 5+3x=5+3x | | 10+2v=4+2v | | 4m+60=400 | | 1/2x-3/2=-3 | | (x-3)/2-(x-2)/8=x/2 | | -120=-3(-4n+8) | | x-18=- | | 10z+35+90=180 | | 8-5x=4-5x | | 8m+12=12m-4 | | 2(3x+5)=5(x−7)2(3x+5)=5(x−7) | | 5x+35+90=180 | | 3m-1/2=1/4m+3 | | 2+4x+10=48 | | 3x2-2x+1=4x+28,72 |